
Rotational Motion I

AP Physics C



The radian
There are 2 types of pure unmixed motion:

� Translational - linear motion

� Rotational - motion involving a rotation or revolution around a 
fixed chosen axis( an axis which does not move).

We need a system that defines BOTH types of motion working 
together on a system. Rotational quantities are usually defined 
with units involving a radian measure.

If we take the radius of a circle and LAY IT

DOWN on the circumference, it will create 

an angle whose arc length is equal to

R.

In other words, one radian angle is 

subtends an arc length ∆∆∆∆s equal to the 
radius of the circle (R)



The radian

Half a radian would subtend an arc length equal to half the radius and 2 

radians would subtend an arc length equal to two times the radius.

A general Radian Angle (∆θ) subtends an arc length (∆s) equal to R. 
The theta in this case represents ANGULAR DISPLACEMENT.



Angular Velocity
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Since velocity is defined as the rate of 

change of displacement. ANGULAR 
VELOCITY is defined as the rate of 

change of ANGULAR DISPLACEMENT.

o
36021 == radiansrevolution π

NOTE:

Translational motion tells you THREE THINGS
• magnitude of the motion and the units

• Axis the motion occurs on

• direction on the given axis

Example: v =3i

This tells us that the magnitude is 3 m/s, the axis is the "x" axis and 

the direction is in the "positive sense".



Translation vs. Rotation
Translational motion tells you THREE 

THINGS
• magnitude of the motion and the units

• Axis the motion occurs on

• direction on the given axis

Example: v =3i

This tells us that the magnitude is 3 m/s, 

the axis is the "x" axis and the direction is 

in the "positive sense".

Rotational motion tells you THREE THINGS:

• magnitude of the motion and the units

• the PLANE in which the object rotates in

• the directional sense ( counterclockwise or clockwise)

Counterclockwise rotations are defined as having a
direction of POSITVE K motion on the "z" axis



Rotation
Example: Unscrewing a screw or bolt

= 5 rad/sec k

Clockwise rotations are defined as having a 
direction of NEGATIVE K motion on the "z" 

axis

Example: Tightening a screw or bolt

= -5 rad/sec k



Angular Acceleration
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Once again, following the same lines of 

logic. Since acceleration is defined as the 

rate of change of velocity. We can say the 

ANGULAR ACCELERATION is defined 
as the rate of change of the angular
velocity.

Also, we can say that the ANGULAR 
ACCELERATION is the TIME 
DERIVATIVE OF THE ANGULAR 

VELOCITY.

All the rules for integration apply as 
well.∫∫
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Combining motions –Tangential velocity

First we take our equation for the radian 

measure and divide BOTH sides by a change in 
time.

The left side is simply the equation for LINEAR 
velocity. BUT in this case the velocity is 

TANGENT to the circle (according to Newton's

first law). Therefore we call it TANGENTIAL 
VELOCITY.

Inspecting the right side we discover the formula 

for ANGULAR VELOCITY.

Therefore, substituting the appropriate 

symbols we have a formula that relates
Translational velocity to Rotational 
velocity.



Tangential acceleration and rotational kinematics
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Using the same kind of mathematical 

reasoning we can also define Linear 
tangential acceleration.

Inspecting each equation we discover 

that there is a DIRECT relationship

between the Translational quantities 

and the Rotational quantities.

We can therefore RE-WRITE each translational kinematic equation and 

turn it into a rotational kinematic equation.
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Example

A turntable capable of 
angularly accelerating at 
12 rad/s2 needs to be 

given an initial angular 
velocity if it is to rotate 

through a net 400 radians 
in 6 seconds. What must 

its initial angular velocity 
be?

=

+=

+=∆

=

=

=∆

=

o

o

o

o

tt

st

rad

srad

ω

ω

αωθ

ω

θ

α

2

2

2

)6)(12)(5.0()6(400

2
12

?

6

400

/12

30.7 rad/s



Rotational Kinetic Energy and Inertia
Just like massive bodies tend 

to resist changes in their 
motion ( AKA - "Inertia") . 
Rotating bodies also tend 
to resist changes in their 
motion. We call this 
ROTATIONAL INERTIA. 
We can determine its 
expression by looking at 
Kinetic Energy.
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We now have an expression for the rotation of a 

mass in terms of the radius of rotation.

We call this quantity the MOMENT OF INERTIA (I)
with units kgm2



Moment of Inertia, I
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Consider 2 masses, m1 & m2, 

rigidly connected to a bar of 

negligible mass. The system 

rotates around its CM.

This is what we would see if m1 = m2. 

Suppose m1>m2.

m1 m2

r1

r2

Since it is a rigid body, the have the SAME 

angular velocity, ω. The velocity of the center, 
vcm of mass is zero since it is rotating around it. 

We soon see that the TANGENTIAL SPEEDS 

are NOT EQUAL due to different radii. 

ωrvt =



Moment of Inertia, I
Since both masses are moving they have kinetic energy 

or rotational kinetic in this case. 
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So this example clearly illustrates the idea behind the 

SUMMATION in the moment of inertia equation.



Example

===

+=

+=

==

+=

+=

=

)5)(8.9(
5

6
5

6

3
1

2
1

))(
3

2(
2

1
2

1

3
2

2
1

2
1

22

2

2
22

2

@

22

ghv

vvgh

R

v
mRmvmgh

mRIRv

Imvmgh

KKU

EE

cmsphere

RTg

afterbefore

ω

ω

A very common problem is to find the velocity of a ball 

rolling down an inclined plane. It is important to realize 

that you cannot work out this problem they way you 

used to. In the past, everything was SLIDING. Now the 

object is rolling and thus has MORE energy than 

normal. So let’s assume the ball is like a thin spherical 

shell and was released from a position 5 m above the 

ground. Calculate the velocity at the bottom of the 

incline.

7.67 m/s
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If you HAD NOT 

included the 

rotational kinetic 

energy, you see the 

answer is very much 

different.



Example: Moment of Inertia, I
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Let's use this equation to analyze 

the motion of a 4-m long bar with 

negligible mass and two equal 

masses(3-kg) on the end rotating 

around a specified axis.

EXAMPLE #1 -The moment of Inertia when they are rotating around the 

center of their rod.

EXAMPLE #2-The moment if Inertia rotating at 

one end of the rod
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Example cont’
Now let’s calculate the moment of Inertia rotating at a 

point 2 meters from one end of the rod.
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As you can see, the FARTHER the axis of rotation is from the center of mass, 

the moment of inertia increases. We need an expression that will help us 

determine the moment of inertia when this situation arises.



Parallel Axis Theorem
This theorem will allow us to calculate the moment of 

inertia of any rotating body around any axis, 
provided we know the moment of inertia about the 
center of mass. 

It basically states that the Moment of Inertia ( Ip) around any axis "P" is 

equal to the known moment of inertia (Icm) about some center of mass plus 

M ( the total mass of the system) times the square of "d" ( the distance 

between the two parallel axes)

Using the prior example let’s use the parallel axis theorem to calculate the 

moment of inertia when it is rotating around one end and 2m from a fixed 

axis. 



Exam – Parallel Axis Theorem
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Continuous Masses
The earlier equation, I =ΣΣΣΣmr2, worked fine for what is called 

POINT masses. But what about more continuous masses 
like disks, rods, or sphere where the mass is extended 
over a volume or area. In this case, calculus is needed. 
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This suggests that we will 

take small discrete amounts 

of mass and add them up over 

a set of limits. Indeed, that is 

what we will do. Let’s look at a 

few example we “MIGHT”

encounter. Consider a solid 

rod rotating about its CM. 

Will, I =ΣΣΣΣmr2, be the equation 
for a rod?



The rod
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We begin by using the same technique used to 

derive the center of mass of a continuous body.
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The CM acts as the origin in the 

case of determining the limits.



Your turn
What if the rod were rotating on one of its ENDS?
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As you can see you get 

a completely different 

expression depending 

on HOW the body is 

rotating.



The disk
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The bottom line..

Will you be asked to derive the moment of 

inertia of an object? Possibly! Fortunately, 

most of the time the moment of inertia is 

given within the free response question.

Consult the file ( on the notes page) called 

Moments of Inertia to view common 

expressions for “I” for various shapes and 

rotational situations. 


