Simple Harmonic Motion

Honors Physics
Simple Harmonic Motion

Back and forth motion that is caused by a force that is **directly proportional** to the displacement. The displacement centers around an equilibrium position.

\[F_s \alpha x \]
Springs – Hooke’s Law

One of the simplest type of simple harmonic motion is called Hooke's Law. This is primarily in reference to SPRINGS.

\[F_s \propto x \]

\[k = \text{Constant of Proportionality} \]

\[k = \text{Spring Constant (Unit: N/m)} \]

\[F_s = kx \quad \text{or} \quad -kx \]

The negative sign only tells us that “F” is what is called a RESTORING FORCE, in that it works in the OPPOSITE direction of the displacement.
Hooke’s Law

Common formulas which are set equal to Hooke's law are N.S.L. and weight

\[F_s = kx \]
\[F_s = F_g \rightarrow kx = mg \]
\[F_s = F_{net} \rightarrow kx = ma \]
Example

A load of 50 N attached to a spring hanging vertically stretches the spring 5.0 cm. The spring is now placed horizontally on a table and stretched 11.0 cm. What force is required to stretch the spring this amount?

\[F_s = kx \]

\[50 = k (0.05) \]

\[k = 1000 \text{ N/m} \]

\[F_s = (1000)(0.11) \]

\[F_s = 110 \text{ N} \]
Hooke’s Law from a Graphical Point of View

Suppose we had the following data:

<table>
<thead>
<tr>
<th>x(m)</th>
<th>Force(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>12</td>
</tr>
<tr>
<td>0.2</td>
<td>24</td>
</tr>
<tr>
<td>0.3</td>
<td>36</td>
</tr>
<tr>
<td>0.4</td>
<td>48</td>
</tr>
<tr>
<td>0.5</td>
<td>60</td>
</tr>
<tr>
<td>0.6</td>
<td>72</td>
</tr>
</tbody>
</table>

\[F_s = kx \]

\[k = \frac{F_s}{x} \]

\[k = \text{Slope of a F vs. x graph} \]

\(k = 120 \text{ N/m} \)
We have seen F vs. x Before!!!!

\[y = 120x + 1 \times 10^{-14} \]

\[R^2 = 1 \]

Work or ENERGY = $F \Delta x$

Since WORK or ENERGY is the AREA, we must get some type of energy when we compress or elongate the spring. This energy is the AREA under the line!

Since we STORE energy when the spring is compressed and elongated it classifies itself as a “type” of POTENTIAL ENERGY, U_s. In this case, it is called ELASTIC POTENTIAL ENERGY.
Elastic Potential Energy

The graph of F vs. x for a spring that is IDEAL in nature will always produce a line with a positive linear slope. Thus the area under the line will always be represented as a triangle.

\[U_s = \frac{1}{2} k x^2 \]

NOTE: Keep in mind that this can be applied to WORK or can be conserved with any other type of energy.
Conservation of Energy in Springs

The numbers on the diagram assume that 2 joules of work was done to set the mass into motion. The sum of the kinetic and potential energies must then always sum to 2 J, neglecting dissipation.
A slingshot consists of a light leather cup, containing a stone, that is pulled back against 2 rubber bands. It takes a force of 30 N to stretch the bands 1.0 cm (a) What is the potential energy stored in the bands when a 50.0 g stone is placed in the cup and pulled back 0.20 m from the equilibrium position? (b) With what speed does it leave the slingshot?

\[F_s = kx \quad 30 = k(0.01) \quad k = 3000 \, \text{N/m} \]

\[b) U_s = \frac{1}{2} kx^2 = 0.5(k)(.20) = 300 \, \text{J} \]

\[c) E_B = E_A \quad U_s = K \]
\[U_s = \frac{1}{2} mv^2 = \frac{1}{2} (0.050)v^2 \]
\[v = 109.54 \, \text{m/s} \]
Springs are like Waves and Circles

The amplitude, A, of a wave is the same as the displacement, x, of a spring. Both are in meters.

\[T_s = \text{sec/cycle} \]

Let’s assume that the wave crosses the equilibrium line in one second intervals. \[T = \frac{3.5 \text{ seconds}}{1.75 \text{ cycles}} \]. Period, T, is the time for one revolution or in the case of springs the time for ONE COMPLETE oscillation (One crest and trough). Oscillations could also be called vibrations and cycles. In the wave above we have 1.75 cycles or waves or vibrations or oscillations.
The **FREQUENCY** of a wave is the inverse of the **PERIOD**. That means that the frequency is the #cycles per sec. The commonly used unit is **HERTZ(HZ)**.

\[
\text{Period } = T = \frac{\text{seconds}}{\text{cycles}} = \frac{3.5s}{1.75\text{cyc}} = 2s
\]

\[
\text{Frequency } = f = \frac{\text{cycles}}{\text{seconds}} = \frac{1.75\text{cyc}}{3.5 \text{ sec}} = 0.5 \frac{c}{s} = 0.5\text{Hz}
\]

\[
T = \frac{1}{f} \quad f = \frac{1}{T}
\]
SHM and Uniform Circular Motion

Springs and Waves behave very similar to objects that move in circles.

The radius of the circle is symbolic of the displacement, \(x \), of a spring or the amplitude, \(A \), of a wave.

\[
x_{spring} = A_{wave} = r_{circle}
\]
SHM and Uniform Circular Motion

\[E_{\text{before}} = E_{\text{After}} \]

\[U_{\text{spring}} = K \quad \frac{1}{2} kx^2 = \frac{1}{2} mv^2 \]

\[kx^2 = mv^2 \]

\[\frac{x^2}{v^2} = \frac{m}{k} \quad \Rightarrow \quad \frac{x}{v} = \sqrt{\frac{m}{k}} \]
\(v_{\text{circle}} = \frac{2\pi r}{T} \rightarrow \frac{2\pi x}{T} \)

\[
\frac{T}{2\pi} = \frac{x}{v}
\]
SHM and Uniform Circular Motion

\[E_{\text{before}} = E_{\text{After}} \]

\[U_{\text{spring}} = K \quad \frac{1}{2} kx^2 = \frac{1}{2} mv^2 \]

\[kx^2 = mv^2 \]

\[\frac{x^2}{v^2} = \frac{m}{k} \quad \rightarrow \quad \frac{x}{v} = \sqrt{\frac{m}{k}} \]

\[\bar{v}_{\text{circle}} = \frac{2\pi r}{T} \rightarrow \frac{2\pi x}{T} \]

\[\frac{T}{2\pi} = \frac{x}{v} \]

The formula for the PERIOD of an oscillating spring.

\[\sqrt{\frac{m}{k}} = \frac{T}{2\pi} \quad \rightarrow \quad T = 2\pi \sqrt{\frac{m}{k}} \]
Pendulums

Pendulums, like springs, oscillate back and forth exhibiting simple harmonic behavior.

A shadow projector would show a pendulum moving in synchronization with a circle. Here, the angular amplitude is equal to the radius of a circle.
The Period of a Pendulum

\[T_{\text{pendulum}} = 2\pi \sqrt{\frac{l}{g}} \]

\[T^2 = \frac{4\pi^2 l}{g} \]

\[T^2 \propto l \]

\[\frac{4\pi^2}{g} = \text{Constant of Proportionality} \]
A visitor to a lighthouse wishes to determine the height of the tower. She ties a spool of thread to a small rock to make a simple pendulum, which she hangs down the center of a spiral staircase of the tower. The period of oscillation is 9.40 s. What is the height of the tower?

\[
T_P = 2\pi \sqrt{\frac{l}{g}} \rightarrow l = \text{height}
\]

\[
T_P^2 = \frac{4\pi^2 l}{g} \rightarrow l = \frac{T_P^2 g}{4\pi^2} = \frac{9.4^2 (9.8)}{4(3.141592)^2} =
\]

\[
L = \text{Height} = 21.93 \text{ m}
\]