Vector Resolution

Honors Physics

What do you do if you have 2 or more vectors?

We use the term **VECTOR RESOLUTION** to suggest that any vector which **IS NOT** on an axis MUST be broken down into *horizontal* and vertical components.

BUT --- the ultimate and recurring themes in physics is take any and all vectors and turn them all into **ONE BIG RIGHT TRIANGLE**.

TIPS

- Make a drawing showing all the vectors, angles, and given directions.
- 2. Make a chart with all the horizontal components in one column and all the vertical components on the other.
- Make sure you assign a negative sign to any vector which is moving WEST or SOUTH.
- 4. Add all the horizontal components to get ONE value for the horizontal. Do the same for the vertical.
- 5. Use the Pythagorean Theorem to find the resultant and Tangent to find the direction.

Example

A search and rescue operation produced the following search patterns in order:

1: 30 meters, west

2: 65 meters, 32 degrees East of South

3: 130 meters, east

4: 42 meters, 22 degrees West of North

Tip #1: Make a drawing showing all the vectors, angles, and given directions.

1: 30 meters, west

2: 65 meters, 32 degrees East of South

3: 130 meters, east

4: 42 meters, 22 degrees West of North

Tip #2 - Make a chart with all the horizontal components in one column and all the vertical components on the other.

1: 30 meters, west

2: 65 meters, 32 degrees
East of South

3: 130 meters, east

4: 42 meters, 22 degrees West of North

Leg	Horizontal	Vertical
1	30 m	0 m
2		
3	130 m	0 m
4		

Tip #2 - Make a chart with all the horizontal components in one column and all the vertical components on the other.

65 meters, 32 degrees East of South

Leg	Horizontal	Vertical
1	30 m	0 m
2	34.44 m	55.12 m
3	130 m	0 m
4		

Tip #2 - Make a chart with all the horizontal components in one column and all the vertical components on the other.

42 meters, 22 degrees West of North

Leg	Horizontal	Vertical
1	30 m	0 m
2	34.44 m	55.12 m
3	130 m	0 m
4	15.73 m	38.94 m

Tip #3: Assign a negative sign to any vector which is moving WEST or SOUTH.

1: 30 meters, west

2: 65 meters, 32 degrees

East of South

3: 130 meters, east

4: 42 meters, 22 degrees

West of North

Leg	Horizontal	Vertical
1	- 30 m	0 m
2	34.44 m	- 55.12 m
3	130 m	0 m
4	- 15.73 m	38.94 m

Tip #4: Add all the horizontal components to get ONE value for the horizontal. Do the same for the vertical.

1: 30 meters, west

2: 65 meters, 32 degrees

East of South

3: 130 meters, east

4: 42 meters, 22 degrees West of North

118.71 m

-16.18 m

Leg	Horizontal	Vertical
1	-30 m	0 m
2	34.44 m	-55.12 m
3	130 m	0 m
4	-15.73 m	38.94 m
Total	118.71 m	-16.18 m

What does this mean???

Tip #5: Use the Pythagorean Theorem to find the resultant and Tangent to find the direction.

$$R = \sqrt{118.71^2 + (-16.18)^2} = 119.81m$$

$$Tan\theta = \frac{16.18}{118.71} = 0.136$$

$$\theta = Tan^{-1}(0.136) = 7.76^{\circ}$$

Final Answer: 119.81 m, 7.76 degrees, South of East